Divide et Impera is almost optimal for the bounded-hop MST problem on random Euclidean instances

نویسندگان

  • Andrea E. F. Clementi
  • Miriam Di Ianni
  • Massimo Lauria
  • Angelo Monti
  • Gianluca Rossi
  • Riccardo Silvestri
چکیده

The d-Dim h-hops MST problem is defined as follows: Given a set S of points in the ddimensional Euclidean space and s ∈ S, find a minimum-cost spanning tree for S rooted at s with height at most h. We investigate the problem for any constants h and d > 0. We prove the first non trivial lower bound on the solution cost for almost all Euclidean instances (i.e. the lower-bound holds with hight probability). Then we introduce an easy-to-implement, very fast divide et impera heuristic and we prove that its solution cost matches the lower bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the bounded-hop MST problem on random Euclidean instances

The d-Dim h-hops MST problem is defined as follows: Given a set S of points in the d-dimensional Euclidean space and s ∈ S, find a minimum-cost spanning tree for S rooted at s with height at most h. We investigate the problem for any constant h and d > 0. We prove the first non trivial lower bound on the solution cost for almost all Euclidean instances (i.e. the lower-bound holds with high prob...

متن کامل

Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners

We show that for every n-point metric space M and positive integer k, there exists a spanning tree T with unweighted diameter O(k) and weight w(T ) = O(k · n) · w(MST (M)), and a spanning tree T ′ with weight w(T ′) = O(k) · w(MST (M)) and unweighted diameter O(k · n). These trees also achieve an optimal maximum degree. Furthermore, we demonstrate that these trees can be constructed efficiently...

متن کامل

A note on the MST heuristic for bounded edge-length Steiner trees with minimum number of Steiner points

We give a tight analysis of the MST heuristic recently introduced by G.-H. Lin and G. Xue for approximating the Steiner tree with minimum number of Steiner points and bounded edge-lengths. The approximation factor of the heuristic is shown to be one less than the MST number of the underlying space, de ned as the maximum possible degree of a minimum-degree MST spanning points from the space. In ...

متن کامل

On Optimal Solutions for the Optimal Communication Spanning Tree Problem

This paper presents an experimental investigation into the properties of the optimal communication spanning tree (OCST) problem. The OCST problem seeks a spanning tree that connects all the nodes and satisfies their communication requirements at a minimum total cost. The paper compares the properties of random trees to the properties of the best solutions for the OCST problem that are found usi...

متن کامل

A Divide et impera Algorithm for Optimal Pitch Stylization

We present OpS, a divide et impera algorithm to address the problem of pitch stylization as an optimization process in O(NlogN). We aim at balancing the quality of the stylized curve and its cost in terms of the number of control points used. We also investigate how the occurrence of prominent syllables can be exploited to obtain less expensive stylizations. Our tests show that the basic OpS al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005